980 resultados para epigenetic defects


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The production of mature germ cells capable of generating totipotent zygotes is a highly specialized and sexually dimorphic process. The transition from diploid primordial germ cell to haploid spermatozoa requires genome-wide reprogramming of DNA methylation, stage- and testis-specific gene expression, mitotic and meiotic division, and the histone-protamine transition, all requiring unique epigenetic control. Dnmt3L, a DNA methyltransferase regulator, is expressed during gametogenesis, and its deletion results in sterility. We found that during spermatogenesis, Dnmt3L contributes to the acquisition of DNA methylation at paternally imprinted regions, unique nonpericentric heterochromatic sequences, and interspersed repeats, including autonomous transposable elements. We observed retrotransposition of an LTR-ERV1 element in the DNA from Dnmt3L(-/-) germ cells, presumably as a result of hypomethylation. Later in development, in Dnmt3L(-/-) meiotic spermatocytes, we detected abnormalities in the status of biochemical markers of heterochromatin, implying aberrant chromatin packaging. Coincidentally, homologous chromosomes fail to align and form synaptonemal complexes, spermatogenesis arrests, and spermatocytes are lost by apoptosis and sloughing. Because Dnmt3L expression is restricted to gonocytes, the presence of defects in later stages reveals a mechanism whereby early genome reprogramming is linked inextricably to changes in chromatin structure required for completion of spermatogenesis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Context Pseudohypoparathyroidism type 1b (PHP-Ib) is characterized by renal resistance to PTH (and, sometimes, a mild resistance to TSH) and absence of any features of Albright's hereditary osteodystrophy. Patients with PHP-Ib suffer of defects in the methylation pattern of the complex GNAS locus. PHP-Ib can be either sporadic or inherited in an autosomal dominant pattern. Whereas familial PHP-Ib is well characterized at the molecular level, the genetic cause of sporadic PHP-Ib cases remains elusive, although some molecular mechanisms have been associated with this subtype. Objective The aim of the study was to investigate the molecular and imprinting defects in the GNAS locus in two unrelated patients with PHP-Ib. Design We have analyzed the GNAS locus by direct sequencing, Methylation-Specific Multiplex Ligation-dependent Probe Amplification, microsatellites, Quantitative Multiplex PCR of Short Fluorescent fragments and array-Comparative Genomic Hybridization studies in order to characterize two unrelated families with clinical features of PHP-Ib. Results We identified two duplications in the GNAS region in two patients with PHP-Ib: one of them, comprising similar to 320 kb, occurred 'de novo' in the patient, whereas the other one, of similar to 179 kb in length, was inherited from the maternal allele. In both cases, no other known genetic cause was observed. Conclusion In this article, we describe the to-our-knowledge biggest duplications reported so far in the GNAS region. Both are associated to PHP-Ib, one of them occurring 'de novo' and the other one being maternally inherited.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: The in vitro production (IVP) of embryos by in vitro fertilization or cloning procedures has been known to cause epigenetic changes in the conceptus that in turn are associated with abnormalities in pre- and postnatal development. Handmade cloning (HMC) procedures and the culture of zona-free embryos in individual microwells provide excellent tools for studies in developmental biology, since embryo development and cell allocation patterns can be evaluated under a wide range of embryo reconstruction arrangements and in in vitro embryo culture conditions. As disturbances in embryonic cell allocation after in vitro embryo manipulations and unusual in vivo conditions during the first third of pregnancy appear to be associated with large offspring, embryo aggregation procedures may allow a compensation for epigenetic defects between aggregated embryos or even may influence more favorable cell allocation in embryonic lineages, favoring subsequent development. Thus, the aim of this study was to evaluate in vitro embryo developmental potential and the pattern of cell allocation in blastocysts developed after the aggregation of handmade cloned embryos produced using syngeneic wild type and/or transgenic somatic cells. Materials, Methods & Results: In vitro-matured bovine cumulus-oocyte complexes (COC) were manually bisected after cumulus and zona pellucida removal; then, two enucleated hemi-oocytes were paired and fused with either a wild type (WT) or a GFP-expressing (GFP) fetal skin cell at the 11th and 19th passages, respectively. Following chemical activation, reconstructed cloned embryos and zona-free parthenote embryos were in vitro-cultured in microwells, for 7 days, either individually (1 x 100%) or after the aggregation of two structures (2 x 100%) per microwell, as follows: (G1) one WT cloned embryo; (G2) two aggregated WT embryos; (G3) one GFP cloned embryo; (G4) two aggregated GFP embryos; (G5) aggregation of a WT embryo and a GFP embryo; (G6) one parthenote embryo; or (G7) two aggregated parthenote embryos. Fusion (clones), cleavage (Day 2), and blastocyst (Day 7) rates, and embryonic cell allocation were compared by the. 2 or Fisher tests. Total cell number (TCN) in blastocysts was analyzed by the Student's test (P < 0.05). Fusion and cleavage rates, and cell allocation were similar between groups. On a per WOW basis, development to the blastocyst stage was similar between groups, except for lower rates of development seen in G3. However, when based on number of embryos per group (one or two), blastocyst development was higher in G1 than all other groups, which were similar between one another. Cloned GFP embryos had lower in vitro development to the blastocyst stage than WT embryos, which had more TCN than parthenote or aggregated chimeric WT/GFP embryos. Aggregated GFP embryos had fewer cells than the other embryo groups. Discussion: The in vitro development of GFP cloned embryos was lower than WT embryos, with no effects on cell allocation in resulting blastocysts. Differences in blastocyst rate between groups were likely due to lower GFP-expressing cell viability, as GFP donor cells were at high population cell doublings when used for cloning. On a per embryo basis, embryo aggregation on Day 1 resulted in blastocyst development similar to non-aggregated embryos on Day 7, with no differences in cell proportion between groups. The use of GFP-expressing cells was proven a promising strategy for the study of cell allocation during embryo development, which may assist in the elucidation of mechanisms of abnormalities after in vitro embryo manipulations, leading to the development of improved protocols for the in vitro production (IVP) of bovine embryos.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Individuals with inherited deficiency in DNA mismatch repair(MMR) (Lynch syndrome) LS are predisposed to different cancers in a non-random fashion. Endometrial cancer (EC) is the most common extracolonic malignancy in LS. LS represents the best characterized form of hereditary nonpolyposis colorectal carcinoma (HNPCC). Other forms of familial non-polyposis colon cancer exist, including familial colorectal cancer type X (FCCX). This syndrome resembles LS, but MMR gene defects are excluded and the predisposition genes are unknown so far. To address why different organs are differently susceptible to cancer development, we examined molecular similarities and differences in selected cancers whose frequency varies in LS individuals. Tumors that are common (colorectal, endometrial, gastric) and less common (brain, urological) in LS were characterized for MMR protein expression, microsatellite instability (MSI), and by altered DNA methylation. We also studied samples of histologically normal endometrium, endometrial hyperplasia,and cancer for molecular alterations to identify potential markers that could predict malignant transformation in LS and sporadic cases. Our results suggest that brain and kidney tumors follow a different pathway for cancer development than the most common LS related cancers.Our results suggest also that MMR defects are detectable in endometrial tissues from a proportion of LS mutation carriers prior to endometrial cancer development. Traditionally (complex) atypical hyperplasia has been considered critical for progression to malignancy. Our results suggest that complex hyperplasia without atypia is equally important as a precursor lesion of malignancy. Tumor profiles from Egypt were compared with colorectal tumors from Finland to evaluate if there are differences specific to the ethnic origin (East vs.West). Results showed for the first time a distinct genetic and epigenetic signature in the Egyptian CRC marked by high methylation of microsatellite stable tumors associated with advanced stage, and low frequency of Wnt signaling activation, suggesting a novel pathway. DNA samples from FCCX families were studied with genome wide linkage analysis using microsatellite markers. Selected genes from the linked areas were tested for possible mutations that could explain predisposition to a large number of colon adenomas and carcinomas seen in these families. Based on the results from the linkage analysis, a number of areas with tentative linkage were identified in family 20. We narrowed down these areas by additional microsatellite markers to found a mutation in the BMPR1A gene. Sequencing of an additional 17 FCCX families resulted in a BMPR1A mutation frequency of 2/18 families (11%). Clarification of the mechanisms of the differential tumor susceptibility in LS increases the understanding of gene and organ specific targets of MMR deficiency. While it is generally accepted that widespread MMR deficiency and consequent microsatellite instability (MSI) drives tumorigenesis in LS, the timing of molecular alterations is controversial. In particular, it is important to know that alterations may occur several years before cancer formation, at stages that are still histologically regarded as normal. Identification of molecular markers that could predict the risk of malignant transformation may be used to improve surveillance and cancer prevention in genetically predisposed individuals. Significant fractions of families with colorectal and/or endometrial cancer presently lack molecular definition altogether. Our findings expand the phenotypic spectrum of BMPR1A mutations and, for the first time, link FCCX families to the germline mutation of a specific gene. In particular, our observations encourage screening of additional families with FCCX for BMPR1A mutation, which is necessary in obtaining a reliable estimate of the share of BMPR1A-associated cases among all FCCX families worldwide. Clinically, the identification of predisposing mutations enables targeted cancer prevention in proven mutation carriers and thereby reduces cancer morbidity and mortality in the respective families.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Le centromère est le site chromosomal où le kinetochore se forme, afin d’assurer une ségrégation fidèles des chromosomes et ainsi maintenir la ploïdie appropriée lors de la mitose. L’identité du centromere est héritée par un mécanisme épigénétique impliquant une variante de l’histone H3 nommée centromere protein-A (CENP-A), qui remplace l’histone H3 au niveau de la chromatine du centromère. Des erreurs de propagation de la chromatine du centromère peuvent mener à des problèmes de ségrégation des chromosomes, pouvant entraîner l’aneuploïdie, un phénomène fréquemment observé dans le cancer. De plus, une expression non-régulée de CENP-A a aussi été rapportée dans différentes tumeurs humaines. Ainsi, plusieurs études ont cherchées à élucider la structure et le rôle de la chromatine contenant CENP-A dans des cellules en prolifération. Toutefois, la nature moléculaire de CENP-A en tant que marqueur épigénétique ainsi que ces dynamiques à l'extérieur du cycle cellulaire demeurent des sujets débat. Dans cette thèse, une nouvelle méthode de comptage de molécules uniques à l'aide de la microscopie à réflexion totale interne de la fluorescence (TIRF) sera décrite, puis exploitée afin d'élucider la composition moléculaire des nucléosomes contenant CENP-A, extraits de cellules en prolifération. Nous démontrons que les nucléosomes contenant CENP-A marquent les centromères humains de façon épigénétique à travers le cycle cellulaire. De plus, nos données démontrent que la forme prénucléosomale de CENP-A, en association avec la protéine chaperon HJURP existe sous forme de monomère et de dimère, ce qui reflète une étape intermédiaire de l'assemblage de nucléosomes contenant CENP-A. Ensuite, des analyses quantitatives de centromères lors de différenciation myogénique, et dans différents tissus adultes révèlent des changements globaux qui maintiennent la marque épigénétique dans une forme inactive suite à la différentiation terminale. Ces changements incluent une réduction du nombre de points focaux de CENP-A, un réarrangement des points dans le noyau, ainsi qu'une réduction importante de la quantité de CENP-A. De plus, nous démontrons que lorsqu'une dédifférenciation cellulaire est induite puis le cycle cellulaire ré-entamé, le phénotype "différencié" décrit ci-haut est récupéré, et les centromères reprennent leur phénotype "prolifératif". En somme, cet oeuvre décrit la composition structurale sous-jacente à l'identité épigénétique des centromères de cellules humaines lors du cycle cellulaire, et met en lumière le rôle de CENP-A à l'extérieur du cycle cellulaire.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With molecular biology methods and bioinformatics, the Argonaute proteins in Dictyostelium discoideum were characterized, and the function of the AgnA protein in RNAi and DNA methylation was investigated, as well as cellular features. Also interaction partners of the PAZ-Piwi domain of AgnA (PAZ-PiwiAgnA) were discovered. The Dictyostelium genome encodes five Argonaute proteins, termed AgnA/B/C/D/E. The expression level of Argonaute proteins was AgnB/D/E > AgnA > AgnC. All these proteins contain the characteristic conserved of PAZ and Piwi domains. Fluorescence microscopy revealed that the overexpressed C-terminal GFP-fusion of PAZ-PiwiAgnA (PPWa-GFP) localized to the cytoplasm. Overexpression of PPWa-GFP leaded to an increased gene silencing efficiency mediated by RNAi but not by antisense RNA. This indicated that PAZ-PiwiAgnA is involved in the RNAi pathway, but not in the antisense pathway. An analysis of protein-protein interactions by a yeast-two-hybrid screen on a cDNA library from vegetatively grown Dictyostelium revealed that several proteins, such as EF2, EF1-I, IfdA, SahA, SamS, RANBP1, UAE1, CapA, and GpdA could interact with PAZ-PiwiAgnA. There was no interaction between PAZ-PiwiAgnA and HP1, HelF and DnmA detected by direct yeast-two-hybrid analysis. The fluorescence microscopy images showed that the overexpressed GFP-SahA or IfdA fusion proteins localized to both cytoplasm and nuclei, while the overexpressed GFP-SamS localized to the cytoplasm. The expression of SamS in AgnA knock down mutants was strongly down regulated on cDNA and mRNA level in, while the expression of SahA was only slightly down regulated. AgnA knock down mutants displayed defects in growth and phagocytosis, which suggested that AgnA affects also cell biological features. The inhibition of DNA methylation on DIRS-1 and Skipper retroelements, as well as the endogenous mvpB and telA gene, observed for the same strains, revealed that AgnA is involved in the DNA methylation pathway. Northern blot analysis showed that Skipper and DIRS-1 were rarely expressed in Ax2, but the expression of Skipper was upregulated in AgnA knock down mutants, while the expression of DIRS-1 was not changed. A knock out of the agnA gene failed even though the homologous recombination of the disruption construct occurred at the correct site, which indicated that there was a duplication of the agnA gene in the genome. The same phenomenon was also observed in ifdA knock out experiments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Persons affected by Down Syndrome show a heterogeneous phenotype that includes developmental defects and cognitive and haematological disorders. Premature accelerated aging and the consequent development of age associated diseases like Alzheimer Disease (AD) seem to be the cause of higher mortality late in life of DS persons. Down Syndrome is caused by the complete or partial trisomy of chromosome 21, but it is not clear if the molecular alterations of the disease are triggered by the specific functions of a limited number of genes on chromosome 21 or by the disruption of genetic homeostasis due the presence of a trisomic chromosome. As epigenomic studies can help to shed light on this issue, here we used the Infinium HumanMethilation450 BeadChip to analyse blood DNA methylation patterns of 29 persons affected by Down syndrome (DSP), using their healthy siblings (DSS) and mothers (DSM) as controls. In this way we obtained a family-based model that allowed us to monitor possible confounding effects on DNA methylation patterns deriving from genetic and environmental factors. We showed that defects in DNA methylation map in genes involved in developmental, neurological and haematological pathways. These genes are enriched on chromosome 21 but localize also in the rest of the genome, suggesting that the trisomy of specific genes on chromosome 21 induces a cascade of events that engages many genes on other chromosomes and results in a global alteration of genomic function. We also analysed the methylation status of three target regions localized at the promoter (Ribo) and at the 5’ sequences of 18S and 28S regions of the rDNA, identifying differently methylated CpG sites. In conclusion, we identified an epigenetic signature of Down Syndrome in blood cells that sustains a link between developmental defects and disease phenotype, including segmental premature aging.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Centromeres are essential chromosomal loci at which kinetochore formation occurs for spindle fiber attachment during mitosis and meiosis, guiding proper segregation of chromosomes. In humans, centromeres are located at large arrays of alpha satellite DNA, contributing to but not defining centromere function. The histone variant CENP-A assembles at alpha satellite DNA, epigenetically defining the centromere. CENP-A containing chromatin exists as an essential domain composed of blocks of CENP-A nucleosomes interspersed with blocks of H3 nucleosomes, and is surrounded by pericentromeric heterochromatin. In order to maintain genomic stability, the CENP-A domain is propagated epigenetically over each cell division; disruption of propagation is associated with chromosome instabilities such as aneuploidy, found in birth defects and in cancer.

The CENP-A chromatin domain occupies 30-45% of the alpha satellite array, varying in genomic distance according to the underlying array size. However, the molecular mechanisms that control assembly and organization of CENP-A chromatin within its genomic context remain unclear. The domain may shift, expand, or contract, as CENP-A is loaded and dispersed each cell cycle. We hypothesized that in order to maintain genome stability, the centromere is inherited as static chromatin domains, maintaining size and position within the pericentric heterochromatin. Utilizing stretched chromatin fibers, I found that CENP-A chromatin is limited to a sub-region of the alpha satellite array that is fixed in size and location through the cell cycle and across populations.

The average amount of CENP-A at human centromeres is largely consistent, implying that the variation in size of CENP-A domains reflects variations in the number of CENP-A subdomains and/or the density of CENP-A nucleosomes. Multi-color nascent protein labeling experiments were utilized to examine the distribution and incorporation of distinct pools of CENP-A over several cell cycles. I found that in each cell cycle there is independent CENP-A distribution, occurring equally between sister centromeres across all chromosomes, in similar quantities. Furthermore, centromere inheritance is achieved through specific placement of CENP-A, following an oscillating pattern that fixes the location and size of the CENP-A domain. These results suggest that spatial and temporal dynamics of CENP-A are important for maintaining centromere and genome stability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pour ce projet, nous avons développé une plateforme pour l’analyse pangénomique de la méthylation de l’ADN chez le bovin qui est compatible avec des échantillons de petites tailles. Cet outil est utilisé pour étudier les caractéristiques génétiques et épigénétiques (méthylation de l’ADN) des gamètes soumis aux procédures de procréation médicalement assisitée et des embryons précoces. Dans un premier temps, une plateforme d’analyse de biopuces spécifiques pour l’étude de la méthylation de l’ADN chez l’espèce bovine a été développée. Cette plateforme a ensuite été optimisée pour produire des analyses pangénomiques de méthylation de l’ADN fiables et reproductibles à partir d’échantillons de très petites tailles telle que les embryons précoces (≥ 10 ng d’ADN a été utilisé, ce qui correspond à 10 blastocystes en expansion). En outre, cet outil a permis d’évaluer de façon simultanée la méthylation de l’ADN et le transcriptome dans le même échantillon, fournissant ainsi une image complète des profils génétiques et épigénétiques (méthylation de l’ADN). Comme preuve de concept, les profils comparatifs de méthylation de l’ADN spermatique et de blastocystes bovins ont été analysés au niveau de l’ensemble du génome. Dans un deuxième temps, grâce à cette plateforme, les profils globaux de méthylation de l’ADN de taureaux jumeaux monozygotes (MZ) ont été analysés. Malgré qu’ils sont génétiquement identiques, les taureaux jumeaux MZ ont des descendants avec des performances différentes. Par conséquent, l’hypothèse que le profil de méthylation de l’ADN spermatique de taureaux jumeaux MZ est différent a été émise. Dans notre étude, des différences significatives entre les jumeaux MZ au niveau des caractéristiques de la semence ainsi que de la méthylation de l’ADN ont été trouvées, chacune pouvant contribuer à l’obtention de performances divergentes incongrues des filles engendrées par ces jumeaux MZ. Dans la troisième partie de ce projet, la même plateforme a été utilisée pour découvrir les impacts d’une supplémentation à forte concentration en donneur de méthyle universel sur les embryons précoces bovins. La supplémentation avec de grandes quantités d’acide folique (AF) a été largement utilisée et recommandée chez les femmes enceintes pour sa capacité bien établie à prévenir les malformations du tube neural chez les enfants. Cependant, plus récemment, plusieurs études ont rapporté des effets indésirables de l’AF utilisé à des concentrations élevées, non seulement sur le développement de l’embryon, mais aussi chez les adultes. Au niveau cellulaire, l’AF entre dans le métabolisme monocarboné, la seule voie de production de S-adénosyl méthionine (SAM), un donneur universel de groupements méthyles pour une grande variété de biomolécules, y compris l’ADN. Par conséquent, pour résoudre cette controverse, une forte dose de SAM a été utilisée pour traiter des embryons produits in vitro chez le bovin. Ceci a non seulement permis d’influencer le phénotype des embryons précoces, mais aussi d’avoir un impact sur le transcriptome et le méthylome de l’ADN. En somme, le projet en cours a permis le développement d’une plateforme d’analyse de la méthylation de l’ADN à l’échelle du génome entier chez le bovin à coût raisonnable et facile à utiliser qui est compatible avec les embryons précoces. De plus, puisque c’est l’une des premières études de ce genre en biologie de la reproduction bovine, ce projet avait trois objectifs qui a donné plusieurs nouveaux résultats, incluant les profils comparatifs de méthylation de l’ADN au niveau : i) blastocystes versus spermatozoïdes ; ii) semence de taureaux jumeaux MZ et iii) embryons précoces traités à de fortes doses de SAM versus des embryons précoces non traités.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The repair of large non-unions in long bones remains a significant clinical problem due to high failure rates and limited tissue availability for auto- and allografts. Many cell-based strategies for healing bone defects deliver bone marrow stromal cells to the defect site to take advantage of the inherent osteogenic capacity of this cell type. However, many factors, including donor age and ex vivo expansion of the cells, cause bone marrow stromal cells to lose their differentiation ability. To overcome these limitations, we have genetically engineered bone marrow stromal cells to constitutively overexpress the osteoblast specific transcription factor Runx2. In the present study, we examined Runx2-modified bone marrow stromal cells, delivered via poly(caprolactone) scaffolds loaded with type I collagen meshes, in critically-sized segmental defects in rats compared to unmodified cells, cell-free scaffolds and empty defects. Runx2 expression in bone marrow stromal cells accelerated healing of critically-sized defects compared to unmodified bone marrow stromal cells and defects receiving cell-free treatments. These findings provide an accelerated method for healing large bone defects which may reduce recovery time and the need for external fixation of critically-sized defects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to evaluate the healing of class III furcation defects following transplantation of autogenous periosteal cells combined with b-tricalcium phosphate (b-TCP). Periosteal cells obtained from Beagle dogs’ periosteum explant cultures, were inoculated onto the surface of b-TCP. Class III furcation defects were created in the mandibular premolars. Three experimental groups were used to test the defects’ healing: group A, b-TCP seeded with periosteal cells were transplanted into the defects; group B, b-TCP alone was used for defect filling; and group C, the defect was without filling materials. Twelve weeks post surgery, the tissue samples were collected for histology, immunohistology and X-ray examination. It was found that both the length of newly formed periodontal ligament and the area of newly formed alveolar bone in group A, were significantly increased compared with both group B and C. Furthermore, both the proportion of newly formed periodontal ligament and newly formed alveolar bone in group A were much higher than those of group B and C. The quantity of cementum and its percentage in the defects (group A) were also significantly higher than those of group C. These results indicate that autogenous periosteal cells combined with b-TCP application can improve periodontal tissue regeneration in class III furcation defects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inspection of solder joints has been a critical process in the electronic manufacturing industry to reduce manufacturing cost, improve yield, and ensure product quality and reliability. The solder joint inspection problem is more challenging than many other visual inspections because of the variability in the appearance of solder joints. Although many research works and various techniques have been developed to classify defect in solder joints, these methods have complex systems of illumination for image acquisition and complicated classification algorithms. An important stage of the analysis is to select the right method for the classification. Better inspection technologies are needed to fill the gap between available inspection capabilities and industry systems. This dissertation aims to provide a solution that can overcome some of the limitations of current inspection techniques. This research proposes two inspection steps for automatic solder joint classification system. The “front-end” inspection system includes illumination normalisation, localization and segmentation. The illumination normalisation approach can effectively and efficiently eliminate the effect of uneven illumination while keeping the properties of the processed image. The “back-end” inspection involves the classification of solder joints by using Log Gabor filter and classifier fusion. Five different levels of solder quality with respect to the amount of solder paste have been defined. Log Gabor filter has been demonstrated to achieve high recognition rates and is resistant to misalignment. Further testing demonstrates the advantage of Log Gabor filter over both Discrete Wavelet Transform and Discrete Cosine Transform. Classifier score fusion is analysed for improving recognition rate. Experimental results demonstrate that the proposed system improves performance and robustness in terms of classification rates. This proposed system does not need any special illumination system, and the images are acquired by an ordinary digital camera. In fact, the choice of suitable features allows one to overcome the problem given by the use of non complex illumination systems. The new system proposed in this research can be incorporated in the development of an automated non-contact, non-destructive and low cost solder joint quality inspection system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bone generation by autogenous cell transplantation in combination with a biodegradable scaffold is one of the most promising techniques being developed in craniofacial surgery. The objective of this combined in vitro and in vivo study was to evaluate the morphology and osteogenic differentiation of bone marrow derived mesenchymal progenitor cells and calvarial osteoblasts in a two-dimensional (2-D) and three-dimensional (3-D) culture environment (Part I of this study) and their potential in combination with a biodegradable scaffold to reconstruct critical-size calvarial defects in an autologous animal model [Part II of this study; see Schantz, J.T., et al. Tissue Eng. 2003;9(Suppl. 1):S-127-S-139; this issue]. New Zealand White rabbits were used to isolate osteoblasts from calvarial bone chips and bone marrow stromal cells from iliac crest bone marrow aspirates. Multilineage differentiation potential was evaluated in a 2-D culture setting. After amplification, the cells were seeded within a fibrin matrix into a 3-D polycaprolactone (PCL) scaffold system. The constructs were cultured for up to 3 weeks in vitro and assayed for cell attachment and proliferation using phase-contrast light, confocal laser, and scanning electron microscopy and the MTS cell metabolic assay. Osteogenic differentiation was analyzed by determining the expression of alkaline phosphatase (ALP) and osteocalcin. The bone marrow-derived progenitor cells demonstrated the potential to be induced to the osteogenic, adipogenic, and chondrogenic pathways. In a 3-D environment, cell-seeded PCL scaffolds evaluated by confocal laser microscopy revealed continuous cell proliferation and homogeneous cell distribution within the PCL scaffolds. On osteogenic induction mesenchymal progenitor cells (12 U/L) produce significantly higher (p < 0.05) ALP activity than do osteoblasts (2 U/L); however, no significant differences were found in osteocalcin expression. In conclusion, this study showed that the combination of a mechanically stable synthetic framework (PCL scaffolds) and a biomimetic hydrogel (fibrin glue) provides a potential matrix for bone tissue-engineering applications. Comparison of osteogenic differentiation between the two mesenchymal cell sources revealed a similar pattern.